Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Infect ; 88(5): 106148, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588959

RESUMO

OBJECTIVES: In this study, we investigated the causes of measles-like illnesses (MLI) in the Uganda national surveillance program in order to inform diagnostic assay selection and vaccination strategies. METHODS: We used metagenomic next-generation sequencing (M-NGS) on the Illumina platform to identify viruses associated with MLI (defined as fever and rash in the presence of either cough, coryza or conjunctivitis) in patient samples that had tested IgM negative for measles between 2010 and 2019. RESULTS: Viral genomes were identified in 87/271 (32%) of samples, of which 44/271 (16%) contained 12 known viral pathogens. Expected viruses included rubella, human parvovirus B19, Epstein Barr virus, human herpesvirus 6B, human cytomegalovirus, varicella zoster virus and measles virus (detected within the seronegative window-period of infection) and the blood-borne hepatitis B virus. We also detected Saffold virus, human parvovirus type 4, the human adenovirus C2 and vaccine-associated poliovirus type 1. CONCLUSIONS: The study highlights the presence of undiagnosed viruses causing MLI in Uganda, including vaccine-preventable illnesses. NGS can be used to monitor common viral infections at a population level, especially in regions where such infections are prevalent, including low and middle income countries to guide vaccination policy and optimize diagnostic assays.

2.
Nucleic Acids Res ; 52(6): 3199-3212, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38407436

RESUMO

Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.


Assuntos
Genoma Viral , Vírus da Influenza A , Proteoma , Proteínas Virais , Humanos , Genoma Viral/genética , Vírus da Influenza A/genética , Proteoma/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética , Deleção de Sequência/genética , Animais , Cães , Linhagem Celular
3.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38168266

RESUMO

Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes as they. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.

4.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37643006

RESUMO

Distinct cytomegaloviruses (CMVs) are widely distributed across their mammalian hosts in a highly host species-restricted pattern. To date, evidence demonstrating this has been limited largely to PCR-based approaches targeting small, conserved genomic regions, and only a few complete genomes of isolated viruses representing distinct CMV species have been sequenced. We have now combined direct isolation of infectious viruses from tissues with complete genome sequencing to provide a view of CMV diversity in a wild animal population. We targeted Natal multimammate mice (Mastomys natalensis), which are common in sub-Saharan Africa, are known to carry a variety of zoonotic pathogens, and are regarded as the primary source of Lassa virus (LASV) spillover into humans. Using transformed epithelial cells prepared from M. natalensis kidneys, we isolated CMVs from the salivary gland tissue of 14 of 37 (36 %) animals from a field study site in Mali. Genome sequencing showed that these primary isolates represent three different M. natalensis CMVs (MnatCMVs: MnatCMV1, MnatCMV2 and MnatCMV3), with some animals carrying multiple MnatCMVs or multiple strains of a single MnatCMV presumably as a result of coinfection or superinfection. Including primary isolates and plaque-purified isolates, we sequenced and annotated the genomes of two MnatCMV1 strains (derived from sequencing 14 viruses), six MnatCMV2 strains (25 viruses) and ten MnatCMV3 strains (21 viruses), totalling 18 MnatCMV strains isolated as 60 infectious viruses. Phylogenetic analysis showed that these MnatCMVs group with other murid viruses in the genus Muromegalovirus (subfamily Betaherpesvirinae, family Orthoherpesviridae), and that MnatCMV1 and MnatCMV2 are more closely related to each other than to MnatCMV3. The availability of MnatCMV isolates and the characterization of their genomes will serve as the prelude to the generation of a MnatCMV-based vaccine to target LASV in the M. natalensis reservoir.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Animais , Humanos , Camundongos , Filogenia , Sequência de Bases , Murinae
5.
J Infect ; 87(2): 128-135, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37270070

RESUMO

OBJECTIVES: To determine how the intrinsic severity of successively dominant SARS-CoV-2 variants changed over the course of the pandemic. METHODS: A retrospective cohort analysis in the NHS Greater Glasgow and Clyde (NHS GGC) Health Board. All sequenced non-nosocomial adult COVID-19 cases in NHS GGC with relevant SARS-CoV-2 lineages (B.1.177/Alpha, Alpha/Delta, AY.4.2 Delta/non-AY.4.2 Delta, non-AY.4.2 Delta/Omicron, and BA.1 Omicron/BA.2 Omicron) during analysis periods were included. Outcome measures were hospital admission, ICU admission, or death within 28 days of positive COVID-19 test. We report the cumulative odds ratio; the ratio of the odds that an individual experiences a severity event of a given level vs all lower severity levels for the resident and the replacement variant after adjustment. RESULTS: After adjustment for covariates, the cumulative odds ratio was 1.51 (95% CI: 1.08-2.11) for Alpha versus B.1.177, 2.09 (95% CI: 1.42-3.08) for Delta versus Alpha, 0.99 (95% CI: 0.76-1.27) for AY.4.2 Delta versus non-AY.4.2 Delta, 0.49 (95% CI: 0.22-1.06) for Omicron versus non-AY.4.2 Delta, and 0.86 (95% CI: 0.68-1.09) for BA.2 Omicron versus BA.1 Omicron. CONCLUSIONS: The direction of change in intrinsic severity between successively emerging SARS-CoV-2 variants was inconsistent, reminding us that the intrinsic severity of future SARS-CoV-2 variants remains uncertain.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , Estudos Retrospectivos , Hospitalização
6.
mBio ; 14(3): e0010123, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37097030

RESUMO

Infected hosts possess two alternative strategies to protect themselves against the negative impact of virus infections: resistance, used to abrogate virus replication, and disease tolerance, used to avoid tissue damage without controlling viral burden. The principles governing pathogen resistance are well understood, while less is known about those involved in disease tolerance. Here, we studied bluetongue virus (BTV), the cause of bluetongue disease of ruminants, as a model system to investigate the mechanisms of virus-host interactions correlating with disease tolerance. BTV induces clinical disease mainly in sheep, while cattle are considered reservoirs of infection, rarely exhibiting clinical symptoms despite sustained viremia. Using primary cells from multiple donors, we show that BTV consistently reaches higher titers in ovine cells than cells from cattle. The variable replication kinetics of BTV in sheep and cow cells were mostly abolished by abrogating the cell type I interferon (IFN) response. We identified restriction factors blocking BTV replication, but both the sheep and cow orthologues of these antiviral genes possess anti-BTV properties. Importantly, we demonstrate that BTV induces a faster host cell protein synthesis shutoff in primary sheep cells than cow cells, which results in an earlier downregulation of antiviral proteins. Moreover, by using RNA sequencing (RNA-seq), we also show a more pronounced expression of interferon-stimulated genes (ISGs) in BTV-infected cow cells than sheep cells. Our data provide a new perspective on how the type I IFN response in reservoir species can have overall positive effects on both virus and host evolution. IMPORTANCE The host immune response usually aims to inhibit virus replication in order to avoid cell damage and disease. In some cases, however, the infected host avoids the deleterious effects of infection despite high levels of viral replication. This strategy is known as disease tolerance, and it is used by animal reservoirs of some zoonotic viruses. Here, using a virus of ruminants (bluetongue virus [BTV]) as an experimental system, we dissected virus-host interactions in cells collected from species that are susceptible (sheep) or tolerant (cow) to disease. We show that (i) virus modulation of the host antiviral type I interferon (IFN) responses, (ii) viral replication kinetics, and (iii) virus-induced cell damage differ in tolerant and susceptible BTV-infected cells. Understanding the complex virus-host interactions in disease tolerance can allow us to disentangle the critical balance between protective and damaging host immune responses.


Assuntos
Bluetongue , Interferon Tipo I , Feminino , Ovinos , Animais , Bovinos , Interferon Tipo I/genética , Bluetongue/metabolismo , Viremia , Antivirais
7.
PLoS One ; 18(4): e0284187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37053201

RESUMO

OBJECTIVES: The SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this. METHODS: In this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the Alpha variant became dominant in Scotland and modelled the association between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death. RESULTS: Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus pre-Alpha variants). CONCLUSIONS: The Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Estudos Retrospectivos , Escócia/epidemiologia , Genômica
8.
IDCases ; 32: e01741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36942308

RESUMO

Persistent Hepatitis E Virus infection (HEV) is a rare but increasingly recognised condition in immunocompromised individuals. Untreated, this infection can rapidly progress to cirrhosis. Ribavirin is recommended as the first line treatment and the majority achieve sustained viral clearance. However, treatment options are limited for those who fail ribavirin. We report a case of a patients with ribavirin-refractory persistent HEV who responded to ledipasvir/sofosbuvir and ribavirin treatment. This patients had failed 2 course of ribavirin and 1 course of PEG-Interferon and ribavirin and he was known to harbour ribavirin-associated mutations (G1634R, D1384G and K1383N) in the RNA dependent RNA polymerase. He was treated with ledipasvir/sofosbuvir (LDV/SOF; Harvoni 90/400 mg) and ribavirin (R) 400 mg twice daily for 32 weeks. At treatment initiation his HEV RNA was 1.1 × 106 IU/ML and reduced to 1.8 × 104 IU/ML and 43 IU/ML at one and four weeks of treatment, respectively, becoming not detected in blood and stool by week eight. His blood HEV RNA remained undetectable for seven months after treatment completion. Unfortunately, at eight months post-treatment, his blood HEV RNA became detectable at a low level (35 IU/ML). His stool HEV RNA was also detectable at 620 IU/ML consistent with a late relapse. He restarted LDV/SOF+R and by week four of treatment HEV RNA was not detected in blood and stool. He remains on treatment. In conclusion, this is the first report demonstrating the antiviral activity of LDV/SOF+R in the treatment of persistent HEV infection.

9.
Nature ; 617(7961): 555-563, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996873

RESUMO

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Assuntos
Infecções por Adenovirus Humanos , Dependovirus , Hepatite , Criança , Humanos , Doença Aguda/epidemiologia , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/genética , Infecções por Adenovirus Humanos/virologia , Alelos , Estudos de Casos e Controles , Linfócitos T CD4-Positivos/imunologia , Coinfecção/epidemiologia , Coinfecção/virologia , Dependovirus/isolamento & purificação , Predisposição Genética para Doença , Vírus Auxiliares/isolamento & purificação , Hepatite/epidemiologia , Hepatite/genética , Hepatite/virologia , Hepatócitos/virologia , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Fígado/virologia
10.
Sci Adv ; 9(10): eadd7437, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897949

RESUMO

Controlling pathogen circulation in wildlife reservoirs is notoriously challenging. In Latin America, vampire bats have been culled for decades in hopes of mitigating lethal rabies infections in humans and livestock. Whether culls reduce or exacerbate rabies transmission remains controversial. Using Bayesian state-space models, we show that a 2-year, spatially extensive bat cull in an area of exceptional rabies incidence in Peru failed to reduce spillover to livestock, despite reducing bat population density. Viral whole genome sequencing and phylogeographic analyses further demonstrated that culling before virus arrival slowed viral spatial spread, but reactive culling accelerated spread, suggesting that culling-induced changes in bat dispersal promoted viral invasions. Our findings question the core assumptions of density-dependent transmission and localized viral maintenance that underlie culling bats as a rabies prevention strategy and provide an epidemiological and evolutionary framework to understand the outcomes of interventions in complex wildlife disease systems.


Assuntos
Quirópteros , Vírus da Raiva , Raiva , Animais , Humanos , Vírus da Raiva/genética , Raiva/epidemiologia , Raiva/prevenção & controle , Teorema de Bayes , Peru/epidemiologia , Gado , Animais Selvagens
11.
Appl Environ Microbiol ; 88(22): e0141222, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36318064

RESUMO

The intracellular bacterium Wolbachia inhibits virus replication and is being harnessed around the world to fight mosquito-borne diseases through releases of mosquitoes carrying the symbiont. Wolbachia strains vary in their ability to invade mosquito populations and suppress viruses in part due to differences in their density within the insect and associated fitness costs. Using whole-genome sequencing, we demonstrate the existence of two variants in wAlbB, a Wolbachia strain being released in natural populations of Aedes aegypti mosquitoes. The two variants display striking differences in genome architecture and gene content. Differences in the presence/absence of 52 genes between variants include genes located in prophage regions and others potentially involved in controlling the symbiont's density. Importantly, we show that these genetic differences correlate with variation in wAlbB density and its tolerance to heat stress, suggesting that different wAlbB variants may be better suited for field deployment depending on local environmental conditions. Finally, we found that the wAlbB genome remained stable following its introduction in a Malaysian mosquito population. Our results highlight the need for further genomic and phenotypic characterization of Wolbachia strains in order to inform ongoing Wolbachia-based programs and improve the selection of optimal strains in future field interventions. IMPORTANCE Dengue is a viral disease transmitted by Aedes mosquitoes that threatens around half of the world population. Recent advances in dengue control involve the introduction of Wolbachia bacterial symbionts with antiviral properties into mosquito populations, which can lead to dramatic decreases in the incidence of the disease. In light of these promising results, there is a crucial need to better understand the factors affecting the success of such strategies, in particular the choice of Wolbachia strain for field releases and the potential for evolutionary changes. Here, we characterized two variants of a Wolbachia strain used for dengue control that differ at the genomic level and in their ability to replicate within the mosquito. We also found no evidence for the evolution of the symbiont within the 2 years following its deployment in Malaysia. Our results have implications for current and future Wolbachia-based health interventions.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Animais , Humanos , Wolbachia/genética , Mosquitos Vetores , Aedes/microbiologia , Genômica
12.
PLoS Pathog ; 18(11): e1010973, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399512

RESUMO

HIV-1 transmission via sexual exposure is an inefficient process. When transmission does occur, newly infected individuals are colonized by the descendants of either a single virion or a very small number of establishing virions. These transmitted founder (TF) viruses are more interferon (IFN)-resistant than chronic control (CC) viruses present 6 months after transmission. To identify the specific molecular defences that make CC viruses more susceptible to the IFN-induced 'antiviral state', we established a single pair of fluorescent TF and CC viruses and used arrayed interferon-stimulated gene (ISG) expression screening to identify candidate antiviral effectors. However, we observed a relatively uniform ISG resistance of transmitted HIV-1, and this directed us to investigate possible underlying mechanisms. Simple simulations, where we varied a single parameter, illustrated that reduced growth rate could possibly underly apparent interferon sensitivity. To examine this possibility, we closely monitored in vitro propagation of a model TF/CC pair (closely matched in replicative fitness) over a targeted range of IFN concentrations. Fitting standard four-parameter logistic growth models, in which experimental variables were regressed against growth rate and carrying capacity, to our in vitro growth curves, further highlighted that small differences in replicative growth rates could recapitulate our in vitro observations. We reasoned that if growth rate underlies apparent interferon resistance, transmitted HIV-1 would be similarly resistant to any growth rate inhibitor. Accordingly, we show that two transmitted founder HIV-1 viruses are relatively resistant to antiretroviral drugs, while their matched chronic control viruses were more sensitive. We propose that, when present, the apparent IFN resistance of transmitted HIV-1 could possibly be explained by enhanced replicative fitness, as opposed to specific resistance to individual IFN-induced defences. However, further work is required to establish how generalisable this mechanism of relative IFN resistance might be.


Assuntos
Dermatite , Soropositividade para HIV , HIV-1 , Humanos , Interferons/farmacologia , Antivirais , Replicação do DNA
13.
PLoS Genet ; 18(9): e1010406, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121852

RESUMO

Wolbachia are widespread maternally-transmitted bacteria of arthropods that often spread by manipulating their host's reproduction through cytoplasmic incompatibility (CI). Their invasive potential is currently being harnessed in field trials aiming to control mosquito-borne diseases. Wolbachia genomes commonly harbour prophage regions encoding the cif genes which confer their ability to induce CI. Recently, a plasmid-like element was discovered in wPip, a Wolbachia strain infecting Culex mosquitoes; however, it is unclear how common such extra-chromosomal elements are in Wolbachia. Here we sequenced the complete genome of wAlbA, a strain of the symbiont found in Aedes albopictus, after eliminating the co-infecting and higher density wAlbB strain that previously made sequencing of wAlbA challenging. We show that wAlbA is associated with two new plasmids and identified additional Wolbachia plasmids and related chromosomal islands in over 20% of publicly available Wolbachia genome datasets. These plasmids encode a variety of accessory genes, including several phage-like DNA packaging genes as well as genes potentially contributing to host-symbiont interactions. In particular, we recovered divergent homologues of the cif genes in both Wolbachia- and Rickettsia-associated plasmids. Our results indicate that plasmids are common in Wolbachia and raise fundamental questions around their role in symbiosis. In addition, our comparative analysis provides useful information for the future development of genetic tools to manipulate and study Wolbachia symbionts.


Assuntos
Aedes , Wolbachia , Aedes/genética , Animais , Plasmídeos/genética , Prófagos/genética , Simbiose/genética , Wolbachia/genética
15.
Sci Rep ; 12(1): 11735, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853960

RESUMO

Whole genome sequencing of SARS-CoV-2 has occurred at an unprecedented scale, and can be exploited for characterising outbreak risks at the fine-scale needed to inform control strategies. One setting at continued risk of COVID-19 outbreaks are higher education institutions, associated with student movements at the start of term, close living conditions within residential halls, and high social contact rates. Here we analysed SARS-CoV-2 whole genome sequences in combination with epidemiological data to investigate a large cluster of student cases associated with University of Glasgow accommodation in autumn 2020, Scotland. We identified 519 student cases of SARS-CoV-2 infection associated with this large cluster through contact tracing data, with 30% sequencing coverage for further analysis. We estimated at least 11 independent introductions of SARS-CoV-2 into the student population, with four comprising the majority of detected cases and consistent with separate outbreaks. These four outbreaks were curtailed within a week following implementation of control measures. The impact of student infections on the local community was short-term despite an underlying increase in community infections. Our study highlights the need for context-specific information in the formation of public health policy for higher educational settings.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Surtos de Doenças , Genômica , Planejamento em Saúde , Humanos , SARS-CoV-2/genética , Estados Unidos , Universidades
16.
Nat Microbiol ; 7(8): 1161-1179, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798890

RESUMO

Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Vacina BNT162 , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
17.
Virus Evol ; 8(1): veac012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600095

RESUMO

Hepatitis C virus (HCV) is a highly diverse pathogen that frequently establishes a chronic long-term infection, but the origins and drivers of HCV diversity in the human population remain unclear. Previously unidentified strains of HCV genotype 6 (gt6) were recently discovered in chronically infected individuals of the Li ethnic group living in Baisha County, Hainan Island, China. The Li community, who were early settlers on Hainan Island, has a distinct host genetic background and cultural identity compared to other ethnic groups on the island and mainland China. In this report, we generated 33 whole virus genome sequences to conduct a comprehensive molecular epidemiological analysis of these novel gt6 strains in the context of gt6 isolates present in Southeast Asia. With the exception of one gt6a isolate, the Li gt6 sequences formed three novel clades from two lineages which constituted 3 newly assigned gt6 subtypes and 30 unassigned strains. Using Bayesian inference methods, we dated the most recent common ancestor for all available gt6 whole virus genome sequences to approximately 2767 bce (95 per cent highest posterior density (HPD) intervals, 3670-1397 bce), which is far earlier than previous estimates. The substitution rate was 1.20 × 10-4 substitutions/site/year (s/s/y), and this rate varied across the genome regions, from 1.02 × 10-5 s/s/y in the 5'untranslated region (UTR) region to 3.07 × 10-4 s/s/y in E2. Thus, our study on an isolated ethnic minority group within a small geographical area of Hainan Island has substantially increased the known diversity of HCV gt6, already acknowledged as the most diverse HCV genotype. The extant HCV gt6 sequences from this study were probably transmitted to the Li through at least three independent events dating perhaps from around 4,000 years ago. This analysis describes deeper insight into basic aspects of HCV gt6 molecular evolution including the extensive diversity of gt6 sequences in the isolated Li ethnic group.

18.
PLoS Biol ; 20(4): e3001580, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35439242

RESUMO

Vaccination is a powerful tool in combating infectious diseases of humans and companion animals. In most wildlife, including reservoirs of emerging human diseases, achieving sufficient vaccine coverage to mitigate disease burdens remains logistically unattainable. Virally vectored "transmissible" vaccines that deliberately spread among hosts are a potentially transformative, but still theoretical, solution to the challenge of immunising inaccessible wildlife. Progress towards real-world application is frustrated by the absence of frameworks to guide vector selection and vaccine deployment prior to major in vitro and in vivo investments in vaccine engineering and testing. Here, we performed deep sequencing on field-collected samples of Desmodus rotundus betaherpesvirus (DrBHV), a candidate vector for a transmissible vaccine targeting vampire bat-transmitted rabies. We discovered 11 strains of DrBHV that varied in prevalence and geographic distribution across Peru. The phylogeographic structure of DrBHV strains was predictable from both host genetics and landscape topology, informing long-term DrBHV-vectored vaccine deployment strategies and identifying geographic areas for field trials where vaccine spread would be naturally contained. Multistrain infections were observed in 79% of infected bats. Resampling of marked individuals over 4 years showed within-host persistence kinetics characteristic of latency and reactivation, properties that might boost individual immunity and lead to sporadic vaccine transmission over the lifetime of the host. Further, strain acquisitions by already infected individuals implied that preexisting immunity and strain competition are unlikely to inhibit vaccine spread. Our results support the development of a transmissible vaccine targeting a major source of human and animal rabies in Latin America and show how genomics can enlighten vector selection and deployment strategies for transmissible vaccines.


Assuntos
Quirópteros , Raiva , Vacinas , Animais , Vetores de Doenças , Sequenciamento de Nucleotídeos em Larga Escala , Raiva/epidemiologia , Raiva/prevenção & controle , Raiva/veterinária
19.
Microbiol Resour Announc ; 11(5): e0009522, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35389260

RESUMO

The genome sequences of five strains of a mammarenavirus were assembled from metagenomic data from pygmy mice (Mus minutoides) captured in Sierra Leone. The nearest fully sequenced relatives of this virus, which was named Seli virus, are lymphocytic choriomeningitis virus, Lunk virus, and Ryukyu virus.

20.
J Viral Hepat ; 29(4): 252-262, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075742

RESUMO

Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. There are no previous representative community HCV prevalence studies from Southern Africa, and limited genotypic data. Epidemiological data are required to inform an effective public health response. We conducted a household census-based random sampling serological survey, and a prospective hospital-based study of patients with cirrhosis and hepatocellular carcinoma (HCC) in Blantyre, Malawi. We tested participants with an HCV antigen/antibody ELISA (Monolisa, Bio-Rad), confirmed with PCR (GeneXpert, Cepheid) and used line immunoassay (Inno-LIA, Fujiribio) for RNA-negative participants. We did target-enrichment whole-genome HCV sequencing (NextSeq, Illumina). Among 96,386 censused individuals, we randomly selected 1661 people aged ≥16 years. Population-standardized HCV RNA prevalence was 0.2% (95% CI 0.1-0.5). Among 236 patients with cirrhosis and HCC, HCV RNA prevalence was 1.9% and 5.0%, respectively. Mapping showed that HCV RNA+ patients were from peri-urban areas surrounding Blantyre. Community and hospital HCV RNA+ participants were older than comparator HCV RNA-negative populations (median 53 vs 30 years for community, p = 0.01 and 68 vs 40 years for cirrhosis/HCC, p < 0.001). Endemic HCV genotypes (n = 10) were 4v (50%), 4r (30%) and 4w (10%). In this first census-based community serological study in Southern Africa, HCV was uncommon in the general population, was centred on peri-urban regions and was attributable for <5% of liver disease. HCV infection was observed only among older people, suggesting a historic mechanism of transmission. Genotype 4r, which has been associated with treatment failure with ledipasvir and daclatasvir, is endemic.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , Adolescente , Adulto , Idoso , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/epidemiologia , Hepacivirus/genética , Hepatite C/complicações , Hepatite C/epidemiologia , Anticorpos Anti-Hepatite C , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/complicações , Malaui/epidemiologia , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...